Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Environ Pollut ; : 124105, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710359

RESUMO

Micro- and nanoplastics (MNPs) can enter the atmosphere via sea spray aerosols (SSAs), but the effects of plastic characteristics on the aerosolization process are unclear. Furthermore, the importance of the transport of MNPs via these SSAs as a possible new exposure route for human health remains unknown. The aim of this study was two-fold: (1) to examine if a selection of factors affects aerosolization processes of MNPs, and (2) to estimate human exposure to MNPs via aerosols inhalation. A laboratory-based bubble bursting mechanism, simulating the aerosolization process at sea, was used to investigate the influence of MNP as well as seawater characteristics. To determine the potential human exposure to microplastics via inhalation of SSAs, the results of the laboratory experiments were extrapolated to the field based on sea surface microplastic concentrations and the volume of inhaled aerosols. Enrichment seemed to be influenced by MNP size, concentration and polymer type. With higher enrichment for smaller particles and denser polymers. Experiments with different concentrations showed a larger range of variability but nonetheless lower concentrations seemed to result in higher enrichment, presumably due to lower aggregation. In addition to the MNP characteristics, the type of seawater used seemed to influence the aerosolization process. Our human exposure estimate to microplastic via inhalation of sea spray aerosols shows that in comparison with reported inhaled concentrations in urban and indoor environments, this exposure route seems negligible for microplastics. Following the business-as-usual scenario on plastic production, the daily plastic inhalation in coastal areas in 2100 is estimated to increase but remain far below 1 particle per day. This study shows that aerosolization of MNPs is a new plastic transport pathway to be considered, but in terms of human exposure it seems negligible compared to other more important sources of MNPs, based on current reported environmental concentrations.

2.
Sci Total Environ ; 927: 171969, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547998

RESUMO

Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.


Assuntos
Aerossóis , Endotoxinas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fatores Reguladores de Interferon/metabolismo , Receptor 2 Toll-Like/metabolismo , Bactérias , Poluentes Atmosféricos , Bélgica , Imunidade Inata
4.
Mol Ecol ; : e17312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426368

RESUMO

The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations. To assess the factors influencing the population dynamics of this species, we applied generalised additive models. These models allowed us to quantify the relative contribution of temperature, nutrient levels, salinity, turbidity, concentrations of photosynthetic pigments, as well as chemical pollutants such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs), on copepod density. Temperature and Secchi depth, a proxy for turbidity, were the most important environmental variables predicting the densities of T. longicornis, followed by summed PAH and chlorophyll concentrations. Analysing gene expression in field-collected adults, we observed significant variation in metabolic and stress-response genes. Temperature correlated significantly with genes involved in proteolytic activities, and encoding heat shock proteins. Yet, concentrations of anthropogenic chemicals did not induce significant differences in the gene expression of genes involved in the copepod's fatty acid metabolism or well-known stress-related genes, such as glutathione transferases or cytochrome P450. Our study highlights the potential of gene expression biomonitoring and underscores the significance of a changing environment in future studies.

5.
Ecotoxicol Environ Saf ; 271: 115981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242046

RESUMO

To better understand the fate and assess the ingestible fraction of microplastics (by aquatic organisms), it is essential to quantify and characterize of their released from larger items under environmental realistic conditions. However, the current information on the fragmentation and size-based characteristics of released microplastics, for example from bio-based thermoplastics, is largely unknown. The goal of our work was to assess the fragmentation and release of microplastics, under ultraviolet (UV) radiation and in seawater, from polylactic acid (PLA) items, a bio-based polymer, and from polypropylene (PP) items, a petroleum-based polymer. To do so, we exposed pristine items of PLA and PP, immersed in filtered natural seawater, to accelerated UV radiation for 57 and 76 days, simulating 18 and 24 months of mean natural solar irradiance in Europe. Our results indicated that 76-day UV radiation induced the fragmentation of parent plastic items and the microplastics (50 - 5000 µm) formation from both PP and PLA items. The PP samples (48 ± 26 microplastics / cm2) released up to nine times more microplastics than PLA samples (5 ± 2 microplastics / cm2) after a 76-day UV exposure, implying that the PLA tested items had a lower fragmentation rate than PP. The particles' length of released microplastics was parameterized using a power law exponent (α), to assess their size distribution. The obtained α values were 3.04 ± 0.11 and 2.54 ± 0.06 (-) for 76-day UV weathered PP and PLA, respectively, meaning that PLA microplastics had a larger sized microplastics fraction than PP particles. With respect to their two-dimensional shape, PLA microplastics also had lower width-to-length ratio (0.51 ± 0.17) and greater fiber-shaped fractions (16%) than PP microplastics (0.57 ± 0.17% and 11%, respectively). Overall, the bio-based PLA items under study were more resistant to fragmentation and release of microplastics than the petroleum-based PP tested items, and the parameterized characteristics of released microplastics were polymer-dependent. Our work indicates that even though bio-based plastics may have a slower release of fragmented particles under UV radiation compared to conventional polymer types, they still have the potential to act as a source of microplastics in the marine environment, with particles being available to biota within ingestible size fractions, if not removed before major fragmentation processes.


Assuntos
Petróleo , Poluentes Químicos da Água , Polipropilenos , Microplásticos , Plásticos , Raios Ultravioleta , Imersão , Poliésteres , Água do Mar , Polímeros , Poluentes Químicos da Água/análise
6.
Mar Pollut Bull ; 197: 115774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979528

RESUMO

The biofouling of submerged surfaces such as ship hulls is often prevented by using anti-fouling components in combination with booster biocides. These booster biocides enter the water column and may affect non-target organisms. Although different negative effects have been associated with the use of booster biocides, their effects on non-target organisms are often unknown. So far, the environmental risks for booster biocides have barely been quantified in the North Sea. In this work, the concentration of five commonly used booster biocides as well as tributyltin has been monitored at five dredged spoil disposal sites in the Belgian part of the North Sea and the harbour and ports of Nieuwpoort, Oostende, and Zeebrugge. Hotspots were discovered where the concentration of one or more booster biocides exceeded the predicted no-effect concentration. Tributyltin has been banned since 2008, but concentrations of 237- to 546-fold of the predicted no-effect concentration were detected in the harbours and ports. Moreover, TBT has been detected in the same order of magnitude in other sea basins, emphasizing the need to monitor the trends and impact of booster biocides and TBT in environmental monitoring programs.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Desinfetantes/análise , Mar do Norte , Bélgica , Poluentes Químicos da Água/análise , Monitoramento Ambiental
7.
Environ Pollut ; 337: 122550, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716692

RESUMO

The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-µm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Poliestirenos/toxicidade , Poliestirenos/análise , Microplásticos/toxicidade , Plásticos , Células CACO-2 , Diferenciação Celular , Metabolismo Energético , Poluentes Químicos da Água/análise
8.
Mar Pollut Bull ; 193: 115159, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329739

RESUMO

Time-series are crucial to understand the status of zooplankton communities and to anticipate changes that might affect the entire food web. Long-term time series allow us to understand impacts of multiple environmental and anthropogenic stressors, such as chemical pollution and ocean warming, on the marine ecosystems. Here, a recent time series (2018-2022) of abundance data of four dominant calanoid and one harpacticoid copepod species from the Belgian Part of the North Sea was combined with previously collected (2009-2010, 2015-2016) datasets for the same study area. The time series reveals a significant decrease (up to two orders of magnitude) in calanoid copepod abundance (Temora longicornis, Acartia clausi, Centropages spp., Calanus helgolandicus), while this was not the case for the harpacticoid Euterpina acutifrons. We applied generalized additive models to quantify the relative contribution of temperature, nutrients, salinity, primary production, turbidity and pollution (anthropogenic chemicals, i.e., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) to the population dynamics of these species. Temperature, turbidity and chlorophyll a concentrations were the only variables consistently showing a relative high contribution in all models predicting the abundances of the selected species. The observed heat waves which occurred during the summer periods of the investigated years coincided with population collapses (versus population densities in non-heatwave years) and are considered the most likely cause for the observed copepod abundance decreases. Moreover, the recorded water temperatures during these heatwaves correspond to the physiological thermal limit of some of the studied species. As far as we know, this is the first study to observe ocean warming and marine heat waves having such a dramatic impact (population collapse) on the dominant zooplankton species in shallow coastal areas.


Assuntos
Copépodes , Ecossistema , Animais , Clorofila A , Copépodes/fisiologia , Mar do Norte , Cadeia Alimentar , Zooplâncton/fisiologia
9.
Environ Pollut ; 333: 122090, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352959

RESUMO

Plastics are omnipresent in our daily life. Unfortunately, the produced plastics will partly end up in the environment including aquatic ecosystems. People often refer to littering or illegal waste dumping as sources of plastic emission to the environment. However, daily-life sources could also, unknowingly, contribute considerably to the total microplastic pollution in the ecosystem. Hence, there is an urgent need to study these potential sources. In this research, two common sources, i.e. domestic wastewater and road run-off from tire and road wear particles, were studied in detail to quantify the relative contribution of both domestic sources towards microplastic pollution in freshwater ecosystems in Flanders, Belgium. This assessment shows that every person (in studied area) emits on average 1145 microplastics (25-1000 µm) daily through domestic wastewater, resulting in a yearly discharge of 418,000 microplastic particles per person. The road run-off samples contained between 0.02 and 9.2 mg tire wear particles per litre per day, which corresponds to an emission of 10.8 mg tire wear particles per driven vehicle km. The gross and net emissions of both above mentioned microplastic sources were extrapolated to the whole Flanders region using an emission model. From the yearly gross microplastic pollution in the domestic wastewater, 623 kg (20%) will be discharged in the freshwater. The highest losses originated from the households that have a private drain or are not (yet) connected to an active wastewater treatment plant. In Flanders, the yearly net microplastic emission into the aquatic environment of tire wear particles is estimated to be 246 tonnes (38%), mainly from the direct run-off from the road surface. Based on the results, specific mitigation measures can be installed to reduce the emission of microplastics towards the freshwater ecosystem. Other sources should be quantified in a similar way for a more holistic strategy to counteract plastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Águas Residuárias , Ecossistema , Bélgica , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
10.
Mar Pollut Bull ; 192: 115015, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172341

RESUMO

Sea spray has been suggested to enable the transfer of micro- and nanoplastics (MNPs) from the ocean to the atmosphere, but only a few studies support the role of sea spray aerosols (SSAs) as a source of airborne particles. We demonstrated that MNPs are aerosolized during wave action, via SSAs, under controlled laboratory conditions. We used a mini-Marine-Aerosol-Reference-Tank (miniMART), a device that mimics naturally occurring physical mechanisms producing SSAs, and assessed the aerosolization of fluorescent polystyrene beads (0.5-10 µm), in artificial seawater. The SSAs contained up to 18,809 particles/mL of aerosols for 0.5 µm beads, with an enrichment factor of 19-fold, and 1977 particles/mL of aerosols for 10 µm beads with a 2-fold enrichment factor. Our study demonstrates that the use of the miniMART is essential to assess MNPs aerosolization in a standardized way, supporting the hypothesis which states that MNPs in the surface of the ocean may be transferred to the atmosphere.


Assuntos
Microplásticos , Água do Mar , Oceanos e Mares , Atmosfera , Aerossóis
11.
Sci Total Environ ; 872: 162192, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781133

RESUMO

Microplastics (MPs) are an emerging pollutant of concern in all known aquatic ecosystems. However, studies at a regional scale on MP pollution in freshwater systems and the necessary risk assessments are limited. Therefore, in this study, we examined microplastic concentrations, size distributions, and polymer types in surface waters and sediments in the geographic region Flanders (Belgium), as a case study for a densely populated region and one of the most developed parts of Europe. Samples have been taken on nine different locations, of which five were repeated in a different weather condition. In total 43 aqueous and nine sediment samples have been collected. The quantity and identity of the microplastics in the samples were determined with µFTIR spectroscopy in the range of 25-1000 µm. The MPs' abundances in surface waters and sediments ranged from 0 to 4.8 MP L-1 (average = 0.48 MP L-1) and from 0 to 9558 MP kg-1 dry weight (average = 2774.57 ± 2317.93 MP kg-1 DW), respectively. Polystyrene and polypropylene were the most common polymer compositions found. No correlations were observed between microplastic concentrations in the sediment/the surface water samples and the measured environmental variables rainfall, conductivity, pH, dissolved oxygen content, waterway flow rate and width, and surrounding land use. Risk assessment results for the measured surface water concentrations through the risk quotient (RQ) method and the probabilistic risk assessment framework suggest that most of the sampled sites in Flanders posed negligible risks to freshwater biota, while this was not the case for some of the sediment concentrations. Our results illustrate the need to urgently develop analytical methods that can routinely measure the full size range of MP in environmental samples to adequately assess risks for the environment.

12.
Mar Pollut Bull ; 187: 114601, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652858

RESUMO

Marine environments are globally impacted by vast quantities of munition disposed following both World Wars. Dumped munitions contain conventional explosives, chemicals warfare agents as well as a variety of metals. Field monitoring studies around marine dumpsites report the presence of munition constituents in water and sediment samples. The growing interest and developments in the ocean as a new economic frontier underline the need to remediate existing dumpsites. Here, we provide a comprehensive assessment of the magnitude and potential risks associated with marine munition dumpsites. An overview of the global distribution of dumpsites identifying the most impacted areas is provided, followed by the currently available data on the detection of munition constituents in environmental samples and evidence of their toxic potential to human and environmental health. Finally, existing data gaps are identified and future research needs promoting better understanding of the impact of the dumped material on the marine environment suggested.


Assuntos
Substâncias para a Guerra Química , Substâncias Explosivas , Humanos , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade , Saúde Ambiental , Monitoramento Ambiental
13.
Sci Total Environ ; 867: 161536, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638998

RESUMO

Toxicity tests represent a rapid, user-friendly and cost-effective means to assess the impact of wastewater quality on aquatic ecosystems. There are not many cases where wastewater management standards are set based on various bio-based ecotoxicity values. Here, we tested a novel multitaxon approach to compare standard water quality indices to toxicity metrics obtained from ecotoxicity tests, conducted using aquatic organisms representing several trophic levels (Aliivibrio, Ulva, Daphnia, and Lemna), for 99 industrial wastewater samples from South Korea. For five wastewater samples, the concentrations of Se, Zn, or Ni exceeded the permissible limits (1, 5, and 3 mg L-1, respectively). All the four physiochemical water quality indices tested were positively correlated with Se and Pb concentrations. The toxicity unit (TU) scores indicated a declining sensitivity to pollutants, in the order Lemna (2.87) >Daphnia (2.24) >Aliivibrio (1.78) >Ulva (1.42). Significant correlations were observed between (1) Cd and Ni, and Aliivibrio, (2) Cu and Daphnia, (3) Cd, Cu, Zn, and Cr and Lemna, and (4) Cu, Zn, and Ni and Ulva. Daphnia-Lemna and Lemna-Ulva were found to be good indicators of ecologically harmful Se and Ni contents in wastewater, respectively. We suggest that regulatory thresholds based on these bioassays should be set at TU = 1 for all the species or at TU = 1 for Aliivibrio and Ulva and TU = 2 for Daphnia and Lemna, if the number of companies whose wastewater discharge exceeds the allowable TU levels is <1 % or 5 % of the total number of industries, respectively. Taken together, these findings could help in establishing a rapid, ecologically relevant wastewater quality assessment system that would be useful for developing strategies to protect aquatic ecosystems.


Assuntos
Ulva , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise , Cádmio/farmacologia , Ecossistema , Aliivibrio fischeri , Bioensaio , Medição de Risco , Daphnia
14.
Environ Toxicol Chem ; 42(3): 642-654, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524859

RESUMO

Microplastics (1 µm-5 mm), are ubiquitous in daily-use products and regularly end up in the wastewater. The main part of the wastewater is treated in wastewater treatment plants (WWTPs), which allow for at least partial removal of microplastics. The present study aimed to understand the contribution of domestic wastewater to microplastic pollution in Flanders (Belgium) via two main discharge routes of microplastics: (1) the effluent, and (2) removed fractions. Furthermore the effect of effluent discharge on the microplastic contamination in the waterway was studied in both surface water and sediment samples of upstream and downstream locations of the discharge from three WWTPs. On average, 12.64 ± 20.20 microplastic/L entered a WWTP (10 µm-5 mm). The effluent contained on average 0.41 ± 0.91 microplastic/L, resulting in an average removal efficiency of 97.46% ± 2.33%, which is comparable with various (non-)European countries. Removal efficiencies are both polymer- and size-specific, and data suggest that smaller particles are less efficiently removed from the wastewater, which also causes an increased input of smaller particles to the environment. The sludge is the most efficient treatment process to remove microplastics. Despite the high removal efficiencies, still 1.11 × 107 ± 3.07 × 107 microplastics end up in the nearby waterway daily. Nonetheless, based on the results gathered in the present study, this does not seem to impact the microplastic concentration in the waterway significantly. In summary, the present study offers a holistic approach in the research on the impact of wastewater on microplastic pollution in the ecosystem, integrating different discharge routes and measuring the impact on environmental microplastic pollution. Environ Toxicol Chem 2023;42:642-654. © 2022 SETAC.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Águas Residuárias , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos
15.
Biology (Basel) ; 11(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36358319

RESUMO

A chemical analysis of water quality cannot detect some toxicants due to time constraints, high costs, and limited interactions for detection. Bioassays would offer a complementary means to assess pollution levels in water. Euglena is a flagellate green alga and an excellent system for toxicity testing thanks to its ease of culture, rapid growth, and quick response to environmental stresses. Herein, we examined the sensitivity of E. agilis to seven heavy metals by analyzing six end-point parameters: motility, velocity, cell compactness, upward swimming, r-value, and alignment. Notably, the velocity of E. agilis was most sensitive to cadmium (96.28 mg·L-1), copper (6.51 mg·L-1), manganese (103.28 mg·L-1), lead (78.04 mg·L-1), and zinc (101.90 mg·L-1), while r-values were most sensitive to arsenic (12.84 mg·L-1) and mercury (4.26 mg·L-1). In this study, velocity and r-values are presented as useful biomarkers for the assessment of metal toxicity in Euglena. The metals As, Cd, Cu, and Pb were suitable for this test. The advantages of the ecotoxicity test are its rapidity: It takes 10 min to obtain results, as opposed to the typical 3-4 d of exposure time with intensive labor. Moreover, this test can be performed at room temperature under dark conditions.

16.
Environ Toxicol Chem ; 41(7): 1663-1674, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452557

RESUMO

Microplastic is ubiquitously and persistently present in the marine environment, but knowledge of its population-level effects is limited. In the present study, to quantify the potential theoretical population effect of microplastic, a two-step approach was followed. First, the impact of microplastic (polyethylene, 0.995 g cm-3 , diameter 10-45 µm) on the filtration rate of the pelagic copepod Temora longicornis was investigated under laboratory conditions. It was found that the filtration rate decreased at increasing microplastic concentrations and followed a concentration-response relationship but that at microplastic concentrations <100 particles L-1 the filtration rate was not affected. From the concentration-response relationship between the microplastic concentrations and the individual filtration rate a median effect concentration of the individual filtration rate (48 h) of 1956 ± 311 particles L-1 was found. In a second step, the dynamics of a T. longicornis population were simulated for realistic environmental conditions, and the effects of microplastics on the population density equilibrium were assessed. The empirical filtration rate data were incorporated in an individual-based model implementation of the dynamic energy budget theory to deduct potential theoretical population-level effects. The yearly averaged concentration at which the population equilibrium density would decrease by 50% was 593 ± 376 particles L-1 . The theoretical effect concentrations at the population level were 4-fold lower than effect concentrations at the individual level. However, the theoretical effect concentrations at the population level remain 3-5 orders of magnitude higher than ambient microplastic concentrations. Because the present experiment was short-term laboratory-based and the results were only indirectly validated with field data, the in situ implications of microplastic pollution for the dynamics of zooplankton field populations remain to be further investigated. Environ Toxicol Chem 2022;41:1663-1674. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Microplásticos , Plásticos/toxicidade , Dinâmica Populacional , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Sci Rep ; 12(1): 5749, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388110

RESUMO

Indole signaling plays an important role in bacterial pathogenesis. In this study, the impact of indole on biofilm formation, swimming and swarming motility were explored in Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9, two model pathogens of bivalves. The results showed that indole decreased swimming and swarming motility in both strains, and decreased biofilm formation in V. crassostreae J2-9. Furthermore, indole affected a large number of genes at RNA level, including genes related to metabolism, ABC transporters, flagellar assembly, chemotaxis, and response regulators. Finally, the bacterial virulence towards mussel larvae was decreased by pretreatment with indole in both V. tasmaniensis LGP32 and V. crassostreae J2-9. After 5 days, the survival rate of mussel larvae increased 2.4-fold and 2.8-fold in mussel larvae challenged with V. tasmaniensis LGP32 pretreated with 200 µM and 500 µM indole, respectively. The survival rate of mussel larvae increased 1.5-fold and 1.9-fold in mussel larvae challenged with V. crassostreae J2-9 pretreated with 200 µM and 500 µM indole, respectively. These data indicate that indole has a significant impact on the virulence of V. tasmaniensis LGP32 and V. crassostreae J2-9, and indole signaling could be a promising target for antivirulence therapy.


Assuntos
Bivalves , Vibrio , Animais , Indóis , Vibrio/genética , Virulência/genética
18.
Sci Total Environ ; 823: 153441, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124051

RESUMO

Microplastic pollution is an issue of concern due to the accumulation rates in the marine environment combined with the limited knowledge about their abundance, distribution and associated environmental impacts. However, surveying and monitoring microplastics in the environment can be time consuming and costly. The development of cost- and time-effective methods is imperative to overcome some of the current critical bottlenecks in microplastic detection and identification, and to advance microplastics research. Here, an innovative approach for microplastic analysis is presented that combines the advantages of high-throughput screening with those of automation. The proposed approach used Red Green Blue (RGB) data extracted from photos of Nile red-fluorescently stained microplastics (50-1200 µm) to train and validate a 'Plastic Detection Model' (PDM) and a 'Polymer Identification Model' (PIM). These two supervised machine learning models predicted with high accuracy the plastic or natural origin of particles (95.8%), and the polymer types of the microplastics (88.1%). The applicability of the PDM and the PIM was demonstrated by successfully using the models to detect (92.7%) and identify (80%) plastic particles in spiked environmental samples that underwent laboratorial processing. The classification models represent a semi-automated, high-throughput and reproducible method to characterize microplastics in a straightforward, cost- and time-effective yet reliable way.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Oxazinas , Plásticos , Coloração e Rotulagem , Poluentes Químicos da Água/análise
19.
Environ Sci Technol ; 55(23): 15989-16000, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793130

RESUMO

Marine phytoplankton influence the composition of sea spray aerosols (SSAs) by releasing various compounds. The biogenic surfactant dipalmitoylphosphatidylcholine (DPPC) is known to accumulate in the sea surface microlayer, but its aerosolization has never been confirmed. We conducted a 1 year SSA sampling campaign at the Belgian coast and analyzed the SSA composition. We quantified DPPC at a median and maximum air concentration of 7.1 and 33 pg m-3, respectively. This discovery may be of great importance for the field linking ocean processes to human health as DPPC is the major component of human lung surfactant and is used as excipient in medical aerosol therapy. The natural airborne exposure to DPPC seems too low to induce direct human health effects but may facilitate the effects of other marine bioactive compounds. By analyzing various environmental variables in relation to the DPPC air concentration, using a generalized linear model, we established that wave height is a key environmental predictor and that it has an inverse relationship. We also demonstrated that DPPC content in SSAs is positively correlated with enriched aerosolization of Mg2+ and Ca2+. In conclusion, our findings are not only important from a human health perspective but they also advance our understanding of the production and composition of SSAs.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , 1,2-Dipalmitoilfosfatidilcolina , Aerossóis , Humanos , Pulmão , Oceanos e Mares , Tensoativos
20.
Environ Sci Technol ; 55(9): 6184-6196, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843191

RESUMO

To date, few studies have examined the role of sea spray aerosols (SSAs) in human exposure to harmful and beneficial marine compounds. Two groups of phycotoxins (brevetoxins and ovatoxins) have been reported to induce respiratory syndromes during harmful algal blooms. The aerosolization and coastal air concentrations of other common marine phycotoxins have, however, never been examined. This study provides the first (experimental) evidence and characterization of the aerosolization of okadaic acid (OA), homoyessotoxin, and dinophysistoxin-1 using seawater spiked with toxic algae combined with the realistic SSA production in a marine aerosol reference tank (MART). The potential for aerosolization of these phycotoxins was highlighted by their 78- to 1769-fold enrichment in SSAs relative to the subsurface water. To obtain and support these results, we first developed an analytical method for the determination of phycotoxin concentrations in SSAs, which showed good linearity (R2 > 0.99), recovery (85.3-101.8%), and precision (RSDs ≤ 17.2%). We also investigated natural phycotoxin air concentrations by means of in situ SSA sampling with concurrent aerosolization experiments using natural seawater in the MART. This approach allowed us to indirectly quantify the (harmless) magnitude of OA concentrations (0.6-51 pg m-3) in Belgium's coastal air. Overall, this study provides new insights into the enriched aerosolization of marine compounds and proposes a framework to assess their airborne exposure and effects on human health.


Assuntos
Proliferação Nociva de Algas , Água do Mar , Aerossóis , Humanos , Oceanos e Mares , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA